Friday, June 07, 2013

Analemmas and other things that keep us busy

When I quit my job, I went looking for fun projects to fill some time. Of course there are tons and tons of things to do associated with our house, my bikes, horses, dogs, gardens and whatever else. But one thing I really began to enjoy when I was living abroad was taking lots of photos. Living over there, and traveling back and forth offered many opportunities to stretch my creative legs, and to that end I took a few hundred more than 20,000 pictures during the 5 years I was on the road.

In 2007, while wasting some time in a business meeting I stumbled on photography website called pbase. Basically a large storehouse for amateur and professional photographers. I kept coming across the term "PaD" as in "My 2006 Pad Gallery." It took me a few minutes before the light bulb came on and I realized that it stood for "Photo a Day," or more specifically a collection of pictures taken every day for a year. I gave it a shot and took 365 pictures between July 2007 and June 2008, capturing people and places and things, pretty much all over the world. It was fun. For a while, at least until it became a real drudge, right around picture 304 when I was so close and yet so far from finishing. It certainly improved my eye for things, being forced to find something interesting will do that. But I was glad to take a break when it was done.

I began my second PaD about 2/3 into my stay in Dalian. My first shot was a snowy city scene outside my Kaifaqu apartment and my 366th was the same out my office window at home. A nice pair of bookends that included trips to Beijing, Shanghai, Datong, Yunnan, Tibet, Xian, home, Mexico and every airport in between. Again it was time for a break when I wrapped that one up.

By the time I completed that PaD of that one, I was fully unemployed, not going anywhere in particular and looking for things to do. I decided (we're now in the spring of 2011) to take a spot in my lovely village of Corrales and document it on a weekly basis for a year. We've all seen those stop action videos of flowers opening up and Soybeans breaking the soil in Nebraska, but I was interested in a more macro perspective - all the changes you might see walking past the same spot for a year. I chose a ditch bank up the street from my house and centered my experiment on flood gate, near a spot nicely surrounded by trees and bushes. The resulting video (all the individual photos patched together) captures a year, one second at a time:

video

Once that one was done I started another PaD, this time using only my iPhone and dozens of the myriad photography applications available in the iTunes Store. It was fun, and quite different than doing a PaD with a camera because first of all, I always had it with me and secondly, you can make some weird pictures with your phone. But like the others, it eventually became more of a drudge than a labor of love.

Last June I decided to shoot an Analemma, a multi-shot project that traces the path of the Sun through the sky. The word comes from the Greek ἀνάλημμα which translates as "pedestal of a sundial." Using conventional cameras, it is extremely difficult to do because it means leaving your camera hard-mounted outside somewhere and taking a photo 24-50  times on the same frame of film using a solar filter. It's been done a dozen or so times, the first by a gentleman named Dennis DiCicco between 1978 and 1979. When using film, the roll is developed at the end of the year and then printed on some interesting background that was not part of the original shot (Greek hills with temples on them are very popular choices.)

The advent of digital photography greatly simplified the project however, requiring only your willingness to dedicate a camera and tripod for a year, some time positioning the shot twice a month and a copy of Photoshop. The process I used was pretty simple - I began with a nice morning photo of my backyard with no sun in the frame of reference that would serve as my baseline. Then on the 6th and 21st of each month I went out, aligned the camera to the top of a fence post and the eave of my bike shop and took a picture at precisely 12:18:32 (I messed up and lost 18 minutes during my set-up for the first Sun picture.) From there, I loaded them into the computer, overlaid the latest photo on the baseline photo, carefully aligned my two reference points and cut the center out of the Sun and then pasted it "in place" onto the baseline and then deleted the now useless bi-monthly shot. The result after 28 photos and a year of work is this -


You can see a couple of interesting things here. The crossover does not take place on a significant date, like an Equinox or Solstice. The fact that one of the dates is My Lovely Wife's birthday (April 2) is probably cosmologically significant but how I am not sure. Another is the size of the upper and lower node. Because I live at latitude 35° North, the Sun is never directly overhead going no higher than 78°. At the Equator where the Sun reaches 90°, the Analemma would be directly overhead and equal between top and bottom. In the Southern Hemisphere, at my equivalent latitude, it would be the same shape but with the smaller node on the bottom. The difference in shape is due to the tilt of the Earth and how that affects our virtual position on the planet, relative to the Sun.

There are two components to the Earth's journey around the Sun that cause this Figure 8 to be formed. The first is the tilt of the Earth's axis (23.4 °) relative to the Sun and the second is the elliptical shape of our orbit. If the Earth stood straight up and down and orbited the Sun in a perfect circle, and you went out each day at noon and took a picture, the resulting Analemma would look like this -


 24 Suns superimposed on each other and honestly quite boring.

Now we all know that the Sun moves up and down the sky during the year, lower in the winter, close to overhead at the height of summer and this is due to the tilt. It's what changes the lengths of our days, gives us our seasons, creates temperate zones and allows for ice at the poles. As the Earth moves through its orbit, your position on the globe effectively changes and that is where we get Solstices and Equinoxes and all the variation in between. If the Earth orbited the Sun in a perfect circle but had its tilted axis, the resulting Analemma would look like this -



 The path of the Sun would be vertical from high to low, up and down from a central point.

The effect of the second component - orbit  - would not be as obvious if you simply went outside and looked at the Sun at noon everyday. In fact without a photo, you probably wouldn't notice it at all. This effect manifests itself in a difference in the Sun's position relative to the time on your watch - instead of being in the same place, it's going to be a bit further ahead or behind due to the Earth moving more quickly through the pointy ends of its elliptical journey. Three photos during the year  from an Earth without a tilted axis but with an elliptical orbit would look like this -


The Sun would lag or shoot out ahead of a centered point depending on where the Earth happened to be in its yearly trek through outer space.

But because we are blessed with both components, we end up with a habitable planet and a cool shape in the sky if we take the time to capture it.
The work was pretty interesting in the end. In addition to the lesson in celestial mechanics, I also learned something that I think I already knew - New Mexico has some pretty nice weather. Of all the photos I took, only a few had cloudy skies. And even then, they were not cloudy enough to stop my progress. Here are the raw shots presented in a grid -


And as a added bonus, I was able to create a video like the one I did above of the seasons. It shows trusty Sol making his way up and down and around, this year, next year and for the rest of the time he hangs in the sky. 




No comments: